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ABSTRACT
Supporting programmable stateful packet forwarding functions in
hardware requires a tight balance between functionality and per-
formance. Current state-of-the-art solutions are based on a very
conservative model that assumes worst-case workloads. This finally
limits the programmability of the system, even if actual deployment
conditions may be very different from the worst-case scenario.

We use trace-based simulations to highlight the benefits of ac-
counting for specific workload characteristics. Furthermore, we show
that relatively simple additions to a switching chip design can take
advantage of such characteristics. In particular, we argue that intro-
ducing stalls in the switching chip pipeline enables stateful functions
to be executed in a larger but bounded time without harming the over-
all forwarding performance. Our results show that, in some cases,
the stateful processing of a packet could use 30x the time budget
provided by state of the art solutions.

CCS CONCEPTS
• Networks → Programming interfaces; • Hardware → Network-
ing hardware;
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1 INTRODUCTION
Processing large network traffic loads requires the execution of com-
plex algorithms in the network data plane, both to implement smart
traffic forwarding policies at line rate or to offload processing that
used to happen on general purpose CPUs. To meet the required
performance, while still providing the ability to quickly adapt the al-
gorithms to new emerging needs, a new generation of programmable
switching devices has been proposed [14, 17].

The challenge of these devices is to provide both programmability
and high-performance forwarding. RMT [14] is an example of a
hardware design that can achieve high throughput while providing
a programmable stateless Match-Action Table (MAT) abstraction,
similar to the one provided by OpenFlow [18], but with programmer-
defined protocol fields and forwarding actions. Sivaraman et al. [24]
demonstrated that it is also possible to implement a high performance
programmable stateful data plane, provided that strict constraints
on the per-packet processing time are met. Here, the challenge is
augmented by the need to guarantee state consistency.

*Work done when at Politecnico di Milano

More specifically, a high performance hardware data plane typi-
cally processes packets in parallel, using a pipelined design. Each
pipeline’s stage performs a few operations on a packet, and all stages
are executed simultaneously. When the hardware’s clock ticks, each
packet in the pipeline is moved to the next stage, the packet in the
last stage exits the pipeline and a new packet enters in the first stage.
In a stateful data plane, a stage performs operations that can read
and write state. If more stages can access the same portion of the
state a data hazard arises. In particular, the longer is the time be-
tween a state read and a state write, the higher is the risk of having a
state inconsistency. That is, the state read by a stage is going to be
invalidated by a write performed in a later stage.

In [24], performance and consistency are guaranteed by ensuring
that state read and write happen within one stage, with no state shared
between different stages. The cost of this design is the inability to
express operations that take longer to complete. In fact, it may not be
possible to perform such operations within the limited time budget
of a single pipeline’s stage. For reference, and assuming that each
stage is executed in a single clock cycle, the time budget for an
operation would be 1 ns for a pipeline clocked at 1 GHz.

While it would be possible to partition over multiple stages oper-
ations that take longer to complete, the consistency harm associated
to accessing the same state from multiple stages prevents the appli-
cation of such techniques. This limitation finally hinders the ability
to implement some applications or, in the best case, forces program-
mers to run approximated version of their algorithms [23].

The mentioned pipelines are usually designed for a worst case
scenario, making two stringent assumptions. First, they assume pack-
ets are all minimum size. However, a data plane pipeline performs
algorithms only acting on packets’ header. For a given line rate,
larger packet sizes actually mean a lower rate of packet headers
to process. Hence, more time per packet can be used to execute
the pipeline operations. Second, they assume that the processing of
different packets requires access to the same portion of the state. In
practice, applications usually access different portions of the state
when processing packets belonging to different flows [20].

Starting from these observations, in this paper we try to under-
stand to which extent such assumptions can be relaxed in real-world
scenarios. Specifically, we make three contributions. First, we build
and make available a trace-based simulator of a variable length
pipeline that allows different stages to access the same state [9].
Second, we evaluate the probability of incurring in a state inconsis-
tency, for different pipeline lengths, when processing 6 real traffic
traces from both carrier and datacenter networks, taking into account
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Figure 1: Simplified data plane architecture.
packet sizes and different flows granularity. Our results show that
for several traces, and for different flows granularity, the probability
of longer multi-stage pipelines to experience an inconsistent state
access is relatively small. Therefore, as third contribution we demon-
strate that a simple locking scheme can prevent state inconsistencies,
while still providing line rate performance in many cases, for the
tested traffic traces.

Our work highlights that the maximum length of the pipeline is
strictly dependent on the particular traffic trace characteristics and
on the considered flow granularity. This suggests that a one-size-
fits-all solution is generally inefficient in this area, and that designs
that take into account the properties of the workload can provide
great benefits. Implementing a full pipeline that takes advantage of
the provided observations remains a challenging task we did not
address yet. However, we provide synthesis results for one of the
required building blocks, i.e., the locking scheme, showing that in
principle it can be implemented with little resources overhead. We
believe our contributions raise interesting discussion points, in a
field that is increasingly looking into reconfigurable hardware to
meet application requirements.

2 REFERENCE MODEL
This section presents the data plane architecture we use as reference
model and that is implemented by state-of-the-art solutions such as
RMT [14]and Cavium’s XPliant Packet Architecture [10].

In such architectures (cf. Fig. 1), packets received from the input
ports are enqueued in per-port queues and served, with a round robin
policy, by a mixer that feeds them to the ingress pipeline. The latter
is composed by a programmable packet parser [14] and by a variable
number of Match-Action Tables (MATs). For each new packet, the
parser extracts the headers that are then processed by the MATs
elements. A MAT element is itself a pipeline, whose structure may
change from one implementation to the other [21, 24],

After the ingress pipeline, the packet is handled by the egress
processing stages, such as output queues, scheduler, and an egress
pipeline (similar to the ingress one), before being delivered to the
output ports. In this paper, we focus on the MAT element’s pipeline,
since it is the component that executes stateful operations.

We can ignore most of the details of the actual MAT element
and model its internal pipeline using just a sequence of stages plus
state. Each stage performs a limited amount of operations, such
as state read/write, or some computation. Furthermore, to simplify
exposition, we assume each stage executes in 1 clock cycle. For
stateful operations, the number of stages between a state read and
a state write determines the time necessary to process a value read
from state, before writing it back. Intuitively, the larger is the number

of pipeline stages, the higher the chances of receiving a new packet
whose processing requires access to that same portion of the state.

Finally, for the pipeline to be able to process one packet each
clock cycle, similarly to previous work [14, 24], we assume that
state associated to stateful functions can provide a throughput of one
read/write operation per clock cycle.

3 RETHINKING DESIGN ASSUMPTIONS
Current stateful data plane architectures, such as Banzai [24], elimi-
nate data hazards by executing memory read and write operations
within the same stage, i.e., in one clock cycle. Such a design derives
from the worst case assumption that all packets have minimum size,
that they arrive back-to-back, i.e., with no inter-packet gaps, and that
they all need to access the same memory area. More specifically,
let’s consider a data plane with a throughput of 640 Gb/s, with a chip
clocked at 1 GHz, as it is the case of RMT [14]. We can assume that
packets are read in chunk of at most 80B (i.e., 80 × 8 bit × 1 GHz =
640 Gb/s) when entering the pipeline. Consequently, it will take 1
clock cycle to read packets with minimum size ≤ 80B, while it will
take more cycles to read longer packets, e.g., 19 cycles for 1500B.

The data plane’s pipeline is dimensioned to accept a new packet’s
headers at each clock cycle. However, even when all packets arrive
back-to-back, the variability of the packet size will cause the pipeline
to experience one or more idle cycles. For example, in the case of
1500B packets, the pipeline will receive packets’ headers at intervals
of 19 clock cycles.

We observe that packets produced by today’s applications have
very variable size distributions. E.g., spanning from 64B to 1500B,
in a typical case, which could leave some space for relaxing the
constraint on the memory read and write operations, when dealing
with non corner-case traffic loads.
Flow-level parallelism A second observation is that data plane state
can be divided in two types: global state and flow state. The first type
is accessed by all packets, with no distinction, while flow state is only
accessed by packets belonging to the same flow, where the definition
of a flow is application-dependent. For instance, it could be the L4
5-tuple, the IP source-destination addresses pair, the destination IP
address only, a portion of the latter, e.g., a /16 subnet, or even a
switch-internal metadata, such as the packet’s ingress or egress port.
As a matter of fact, the notion of flow state is at the base of existing
abstractions such as OpenState [13] and FAST [19], which extend
the processing of a MAT with stateful capabilities. Intuitively, if we
organize the state as an array, where each cell contains the state of
a specific flow, it follows that multiple packets accessing different
cells can be processed in parallel, with no harm for consistency. That
is, for packets accessing only flow state it is safe to concurrently
access the memory.

In practice, functions can use either a combination of the two state
types, or just one. For example, a stateful firewall maintains state
for each bi-directional L4 flow. A dynamic source NAT maintains
both flow state, for each L4 connection, and global state, to store
a pool of available ports. Advanced load balancing schemes, such
as CONGA [11], maintain flow state at different aggregation levels:
i) 5-tuple, to distinguish between flowlets (burst of packets) of the
same L4 connection; ii) tunnel ID, to maintain real-time utilization
levels of several paths, and iii) global state, to store the best path
among the available ones.
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Trace Source Pkts Num flows per 1m pkts
5-tuple ipdst ipdst/16

CHI15 CAIDA [1] 3.5b 100.6k 57.7k 4.6k
SJ12 CAIDA [2] 3.6b 429k 17k 2k
MAWI15 MAWI [7, 15] 135m 40.8k 17.3k 1.7k
FB Facebook [6, 22] 447m n/a n/a n/a
UNI1 Univ. datacenter [4, 12] 18m 43.8k 1k 273
UNI2 Univ. datacenter [4, 12] 98m 7.7k 900 20

Table 1: Packet traces used in simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

C
D

F

bytes

MAWI15
CHI15

SJ12
FB

UNI1
UNI2

Figure 2: Packet size cumulative distribution.

4 MOTIVATING EXPERIMENTS
We implemented a trace-based simulator of the reference model
presented in Sec. 2. We first use the simulator to measure the fraction
of time a pipeline incurs into a data hazard, when processing packets
with stateful operations spanning many clock cycles.

Traffic traces We fed our simulator with six traffic traces from
both carrier networks (CHI15, SJ12, MAWI15) and datacenters (FB,
UNI1, UNI2). Each trace presents different characteristics in terms
of packet size (Fig. 2) and number of flows (Table 1).

CAIDA publishes 1h long traces captured from two backbone
links in the US. We select CHI15 as a trace representative of typical
conditions in CAIDA’s monitored links, since the packet size and
flows distributions are similar to the majority of the other CAIDA’s
traces published in recent years [3]. The packet size presents a
bimodal distribution, 30% of packets have minimum size below
80B, while 50% have larger size close to 1500B. We select a second
CAIDA’s trace, SJ12, since it is representative of an unusual situation
in the network when compared to CHI15. SJ12 has a prevalence of
smaller packets, and a very large number of 5-tuple flows.

MAWI [15] publishes daily traces with 15 minutes of traffic cap-
tured from a transoceanic link between Japan and the US. We select
MAWI15 since it is representative of typical traffic characteristics
reported also by other MAWI traces.

FB includes packets collected from top-of-rack switches at a
Facebook’s datacenter cluster that serves web requests. This trace
presents a significant predominance of small packets compared to
other traces (80% have size < 200 bytes). Unfortunately, the traces
provided by Facebook are the result of uniform sampling with a rate
of 1:30k [6]. As a consequence, we were not able to precisely count
the number of distinct flows. Hence, we use FB only to measure the
effects of variable packet size, ignoring flow-level parallelism.

Finally, UNI1 and UNI2 are recorded from an edge switch at two
different university datacenters. In UNI2 traffic belongs primarily
to distributed file system applications, while in UNI1 traffic is split
60/40 between web services and file sharing applications [12].

Simulations Our simulator implements a pipeline taking as input
(i) the number of pipeline’s stages N , (ii) a definition of the flow
granularity, and (iii) a packet trace.

Each stage is executed in 1 clock cycle. The first stage reads from
the state, while the last one writes to it. N represents the the number
of stages in the pipeline, i.e. the pipeline length, which in our case
corresponds to the number of clock cycles in between a state read
and write operations. The simulator finds a data hazard whenever
the pipeline contains two packet headers whose processing requires
access to the same portion of the state. Clearly, when N = 1, there
is no risk of data hazards. Packets are read in chunks of 80B (as
in RMT), hence taking 19 clock cycles to read 1 packet of 1500B.
For N ≤ 18, there is no risk of data hazard for 1500B packets. With
smaller sizes the pipeline will experience shorter idle gaps, and
hence a higher risk of data hazard. When considering flow-level
parallelism, if two packet headers belonging to distinct flows are
both in the pipeline, this does not generate a data hazard since they
will access different portions of the state.

The simulator processes traffic in batches of 100k packets. For
each batch, it outputs the fraction of data hazards (FDH), i.e, the
number of clock cycles in which a data hazard was found divided
by the total number of clock cycles needed to process 100k packets
(which depends on the packet size). Finally, for each trace, we extract
the 99th percentile from all the FDH values. As an example, if for
a given trace the 99th percentile of the FDH is 0.3, it means that in
the 99% of batches evaluated, the FDH was below 30%. To simulate
100% line rate speed, we accelerate the provided traces by feeding
packets back-to-back, i.e. with no inter-packet gaps.

Fig. 3 (top) shows the results when packets are processed access-
ing a global state. As expected, different traces have different values
of FDH. Those with a prevalence of larger packets have smaller
FDH. E.g., FB with N > 5, produces a FDH of about 35% when
accessing global state; the more favorable packet size distribution of
CHI15 produces a FDH smaller than 10% even for N = 30.

The bottom part of the figure plots FDH values when taking into
account flow parallelism. Using a finer flows granularity can greatly
reduce the FDH. For instance, with SJ12 and a flow definition based
on the destination IP address, FDH is about 24% with N = 30.
When using the 5-tuple to access state, the FDH lowers to less than
3%. In the favorable case of CHI15, when taking into account flow
parallelism, the FDH is about 1% even for stateful pipelines of up to
30 clock cycles.

5 APPROACH: MEMORY LOCKING
The FDH results can be read as an indication of the amount of time
the pipeline should be stalled, in order to avoid data hazards. Stalling
the pipeline can affect the system throughput, however, the cost of a
stall could be potentially amortized during otherwise idle periods.

On the basis of this observation, we designed a locking scheme
that stalls the pipeline whenever there is a new packet that would
trigger a data hazard. In particular, if two packets that require access
to the same portion of the memory arrive back-to-back, processing
is paused for the second packet until the first one has updated the
memory. To enable the amortization, we handle the arrival of packet
bursts introducing queues and a scheduler to arbitrate access to the
portion of the pipeline that needs access to state.

Fig. 4 shows the proposed design. The pipeline is preceded by
Q queues, of length Qlen , and a scheduler. For each new packet,
a flow key (FK) is extracted from its headers. A dispatcher stores
the headers in the q-th queue, where q = hash(FK) mod Q . Since

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018



 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30

F
D

H
 (

9
9

th
 p

e
rc

.)

MAWI15 CHI15 SJ12 FB UNI1 UNI2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  5  10  15  20  25  30

F
D

H
 (

9
9

th
 p

e
rc

.)

pipeline length (clock cycles)

MAWI15
5-tuple

ipdst
ipdst/16

CHI15
5-tuple

ipdst
ipdst/16

SJ
5-tuple

ipdst
ipdst/16

UNI1
5-tuple

ipdst
ipdst/16

UNI2
5-tuple

ipdst
ipdst/16

Figure 3: Fraction of data hazards (FDH) with increasing
pipeline length. (top) presents the case of global state; (bottom)
shows the result when accounting for flow parallelism.

1

2

Q

Memory

1 2 3 N
Processing function

(N clock cycles)

read(FK)
write(FK)

Round-robin scheduler
(W-bits comparator)

Flow key 
extrator

hdrhdr

Di
sp

at
ch

erFKhdr

Multi-cycle stateful operation with locking

q = hash(FK) mod Q

Figure 4: Locking scheme architecture.

packets belonging to a flow are assigned the same flow key, hence
the same queue, per-flow packets ordering is preserved.

The scheduler admits packets in the processing pipeline by look-
ing at each queue, and comparing the head-of-line FK with the at
most N FKs currently traveling in the pipeline. A header is admitted
only if its FK is not currently in the pipeline. We assume the sched-
uler is work-conserving, i.e., if at least one header can be served it
will do so. As such, all non-empty queues should be compared at
the same time. To avoid starvation, the scheduler serves queues in a
round-robin fashion, i.e., with cyclic priority.

We assume a FK can have arbitrary length of FKlen bits. If Q <
2FKlen , multiple flows will end up sharing the same queue. Such
an event may generate head-of-line blocking, where all packets in
a queue are held by the first one. The problem can be alleviated by
adding more queues. However, this would increase the system cost
in terms of memory needed to implement the queues. Furthermore, it
could make it harder for the scheduler comparator to respect timing
constraints. In fact, the work-conserving scheduler compares the FK
from all queues’ head-of-line at the same time, hence increasing the
number of wires with i) the number of queues and ii) the number
of bits to compare for each queue. For this reason, we simplify the
implementation by reducing FK to a smaller space ofW bits. The
reduction is performed by the flow key extractor, which along with
the full FK extends the headers with a field w .

We compute w = hash(FK) mod W . For example, withW = 4,
the scheduler is able to distinguish among 24 = 16 flows. If W <

FKlen there will be different flows colliding onto the same value w ,
impacting performance. The occurrence of collisions also depends
on the hash function. In our experiments we use CRC16, which is

N 8 16 32
Area at 1 GHz 196 µm2 929 µm2 1560 µm2

Min. delay 240 ps 360 ps 400 ps

Table 2: Area and minimum critical-path delay of one compara-
tor in a 45 nm standard-cell library whenW = 4.

 0

 2

 4

 6

 8

 10

100 99,9 99

ti
m

e
 b

u
d

g
e

t 
(c

y
c
le

s
)

 0

 200

 400

 600

 800

 1000

100 99,9 99

q
u

e
u

in
g

 l
a

t.
 (

c
y
c
le

s
) MAWI15

CHI15
SJ12

FB
UNI1
UNI2

Figure 5: Per-packet maximum time budget (left) and 99th per-
centile of the queuing latency (right) when accessing global
state, targeting 100%, 99.9% and 99% line rate throughput.
a common choice in switching hardware architectures. We did not
investigate the impact of other hash functions.

Notice that our design is not novel and different schemes may
be applicable here. However, we are interested in understanding the
feasibility, in principle, of such locking schemes, and in evaluating
the impact they would have on the data plane performance.

5.1 Feasibility
We now provide a preliminary evaluation of the feasibility of the
proposed design. The combinatorial logic complexity of the locking
scheme is that of Q comparators, each one comparing the W bits
of the head of the queue with each of the N stages of the pipeline.
We have synthesized the comparators using the Synopsys Design
Compiler [5] and a 45 nm standard-cell library. The VHDL code is
available at [9]. Table 2 shows the area and minimum critical-path
delay of one comparator whenW = 4 and N = 8, 16, 32. In all the
cases, timing constraints are easily met at 1 GHz, which is the clock
frequency of state-of-the-art architectures such as RMT and Banzai.
In terms of area overhead, when comparing our results to a 200mm2

chip as in [16, 24], we find that comparators area is negligible. For
example, the area of 16 comparators (Q = 16) when N = 16 and
W = 4, corresponds to the 0.01% of the total chip area.

The memory requirements to implement queues isHlen×Q×Qlen
bits, where Hlen is the length in bits of the data path. With Hlen =

88 bytes (80 for the header and 8 for the metadata), Q = 4 and
Qlen = 100, the locking scheme requires 35.2KB of memory for the
queues. Approximately a 3.5% memory overhead compared with
the memory of a MAT stage in RMT.

Finally, there is a silicon overhead associated to the N stages
implementing the actual stateful processing function, which we
do not discuss here. However, it is worth mentioning the RMT
implementation result: 80% of chip area is due to memory (TCAMs
and the IO/buffer/queue subsystem), and less than 20% area is due to
logic. As a consequence, even if we did not test it, we are reasonably
optimistic about the possibility to support more complex processing
functions, which span many pipeline stages.

5.2 Evaluation
We extended the simulator described in Sec. 4 to model the proposed
solution and evaluate it. The extended simulator takes the following
parameters as input: flow granularity; pipeline length (N ); queues
number and size (Q and Qlen); comparator’s bits number (W ).
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Figure 6: Per-packet maximum time budget (left) and 99th per-
centile of the queuing latency (right) when accessing state using
different flow granularities, targeting 100% (a), 99.9% (b) and
99% (c) line rate throughput.

The aim of this round of simulations is twofold. First, we evaluate
the biggest pipeline length (N ) that achieves a target throughput. We
consider the 100% of the line rate and slightly lower values, i.e.,
99.9% and 99%, as viable targets. Second, we evaluate the queuing
latency (QL) introduced by the locking scheme. The per-packet QL
is the number of clock cycles a packet spends in one of the Q queues.
It is a direct effect of employing a blocking architecture. When a
packet finds an empty queue, its QL is 0.

We run the simulator using the traffic traces of Sec. 4. For the QL,
we measure the 99th percentile among all per-packet QL values when
processing a batch of 100k packets, finally we report the maximum
among all batches for a given trace. The results are provided in [9],
here we report few highlights. If not stated differently, the reported
results are computed forW = 4 and Qlen = 100.
Packet size This set of simulations ignores flow-level parallelism,
assuming that all the packets access the same state. Therefore, only
the packet size distribution has an impact on the measured metrics.
Since there is no flow distinction, we simulate a pipeline with a
single queue (Q = 1). Fig. 5 shows the results. As expected, CHI15
has the bigger N , because of the larger mean packet size. The other
traces, instead, do not benefit from the locking scheme, and can
only provide the target throughput with a single clock cycle pipeline
(2 cycles in the case of FB). Reducing the target throughput, from
100% to 99% of the line rate, provides limited benefits in terms
pipeline length. In fact, only the MAWI15 and UNI1 traces could
benefit a larger N of 4 and 3 cycles, respectively. In any case, the
additional cycles come at the cost of increased QL. E.g., with CHI15,
the locking scheme allows for N = 8, at the price of a 99th percentile
QL of 282 cycles, when providing 100% throughput.
Flow parallelism The situation improves when considering per-
flow state accesses. Fig. 6a shows N and QL when changing the
granularity of the flow definition, using 4 queues (Q = 4). In the
case of CHI15, N sensibly increases to 30 cycles: the largest N
we tested in our simulations. For the most granular flow definition
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Figure 7: Per-packet maximum time budget (left) and 99th per-
centile of the queuing latency (right), when using a 5-tuple flow
definition and targeting 99% line rate throughput. The top fig-
ures show the effect of different number of queues, the bottom
ones the effect of different Qlen values on MAWI15.

(5-tuple), also SJ12 can use a longer pipeline with N = 8. Slightly
reducing the target throughput to 99.9% (Fig. 6b), or 99% (Fig. 6c),
provides further benefits. For instance, with a 5-tuple granularity,
all the carrier network traces can have N > 20 when providing 99%
throughput. Again, a larger N comes with the disadvantage of a
longer queuing time. In the previously mentioned case, the 99%
throughput is achieved with a QL 99th percentile of 1300 and 1700
cycles for SJ12 and MAWI15, respectively.
Queues The number and size of queues have an impact on N and
QL. Fig. 7 (top) shows the effect of using varyingQ when targeting a
99% throughput with 5-tuple flows. More queues provide additional
space for packets, allowing the system to provide higher throughput
without drops. E.g., with 8 queues all the carrier network traces can
use up to N = 30, in which case packet’s QL accordingly increases.
Nonetheless, for a fixed value of N , adding queues can actually
reduce the experienced QL by mitigating the head-of-line blocking.

Reducing Qlen , instead, reduces the time a packet can wait to be
served. Thus, QL is greatly reduced, but at the cost of a much lower
N : something particularly severe for traces with a small packet size.
Fig. 7 (bottom) shows this effect for MAWI15 when providing 99%
throughput with 5-tuple flows.

6 DISCUSSION
Our simulation results show it is possible to use a longer pipeline
to perform consistent state operations, when taking into account
actual traffic characteristics. Furthermore, they show that taking
into account state access patterns, i.e., locking state accesses on a
per-flow basis rather than globally, can increase the time budget to
process a packet. These results are highlighted in Fig. 8, where the
simulation’s throughput results for real traffic traces are compared
to a simulation of the worst case currently assumed in stateful data
plane designs (only global states and all minimum size packets).

The ability to support a longer pipeline could potentially allow
a data plane to provide more complex stateful operations, hence it
could help in supporting a larger set of use cases. Also, having a
larger per-packet time budget may reduce the technical challenges of
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Figure 8: Maximum throughput when considering global state
(left) and flow state for a 5-tuple granularity (right), compared
to the worst case (global state and packets all minimum size).

designing a high-performance data plane, providing benefits such as
reduced design costs or allowing designs to use cheaper components.

However, the length of the pipeline, the packet forwarding latency
and the configuration of the locking scheme are dependent on the
specific traffic properties. For instance, the packet size distribution
and the number of the considered network flows play an important
role. The traces used in our evaluation highlight this dependency.
E.g., while CHI15 shows that a typical bimodal packet size distri-
bution can be processed by a long pipeline, the other traces show
that packet sizes play only part of the game. In fact, SJ12 can be
processed by a longer pipeline than MAWI15, when considering a
5-tuple flow granularity (e.g., Fig. 6a), even if it has a less favorable
packet size distribution (cf. Fig. 2). Here, the SJ12’s large number
of 5-tuple flows (cf. Table 1) is the reason.

Furthermore, notice that the flow definition, the required data
plane operations complexity and the maximum tolerable forwarding
latency are application-dependent variables. In practice, this means
that some applications may be supported by pipelines of a given
length, which can implement the required stateful operations, while
others may require longer (or shorter) pipelines. That is, the simu-
lation results and the variability of the applications’ requirements
make it clear that there is no one-size-fits-all solution. This justifies
designers in taking conservative decisions. I.e., data plane pipelines
that provide limited stateful operations in order to guarantee perfor-
mance, independently from the traffic characteristics [24].

Nonetheless, our work suggests there could be an opportunity to
rethink stateful data plane designs and abstractions. E.g., the locking
architecture we described in this paper proved to be effective while
requiring little resources. This could open the space for designing
different (fixed) versions of a data plane pipeline. Each version would
target a particular deployment environment, e.g., carrier vs. data
center network, i.e. characterized by the expected traffic properties,
and could provide different performance trade-offs.

In perspective, a programmer could use the expected traffic char-
acteristics, and her application properties such as the flow definition,
to configure the pipeline stateful operations. Notice that this con-
figuration step would be in line with the RMT approach, where the
number, type and size of MATs can be configured based on the ap-
plication’s needs. Furthermore, we believe this point could be even
more relevant when considering pipelines implemented using dif-
ferent technologies, such as FPGAs [25] and SmartNICs [8], which
allow for a deeper reconfigurability.

7 CONCLUSION
We showed that taking into account traffic characteristics, in particu-
lar when using a flow-based model to access a data plane’s state, can
increase the packet processing time budget. This observation has a
direct impact on the design of high-performance switching pipelines,
where the time budget relates to the number of clock cycles that
can be used to perform consistent data plane’s state modifications.
Furthermore, we presented a sketch of a locking scheme that allows
the switching pipeline to take advantage of the additional per-packet
time without harming state consistency. While the presented locking
scheme is not novel, it shows such an approach is both effective and
applicable with little overheads. The code used for the simulations
is available at [9].

A number of related issues could not find space in this paper.
For instance, we did not provide security considerations about the
proposed blocking architecture, and we did not elaborate on which
stateful operations could be implemented with the additional time
budget. While we believe covering such issues is important, we also
consider them not strictly required for the contribution of this paper.
Nonetheless, such issues are included in our future work.
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