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ABSTRACT

Software Defined Networking envisions smart centralized con-
trollers governing the forwarding behavior of dumb low-
cost switches. But are “dumb” switches an actual strategic
choice, or (at least to some extent) are they a consequence
of the lack of viable alternatives to OpenFlow as program-
matic data plane forwarding interface? Indeed, some level of
(programmable) control logic in the switches might be ben-
eficial to offload logically centralized controllers (de facto
complex distributed systems) from decisions just based on
local states (versus network-wide knowledge), which could
be handled at wire speed inside the device itself. Also, it
would reduce the amount of flow processing tasks currently
delegated to specialized middleboxes. The underlying chal-
lenge is: can we devise a stateful data plane programming
abstraction (versus the stateless OpenFlow match/action ta-
ble) which still entails high performance and remains consis-
tent with the vendors’ preference for closed platforms? We
posit that a promising answer revolves around the usage of
extended finite state machines, as an extension (super-set)
of the OpenFlow match/action abstraction. We concretely
turn our proposed abstraction into an actual table-based
API, and, perhaps surprisingly, we show how it can be sup-
ported by (mostly) reusing core primitives already imple-
mented in OpenFlow devices.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Network Ar-
chitecture and Design
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1. INTRODUCTION

Just a few years ago it was normal to configure network
devices using proprietary interfaces, differing across vendors,
device types (switches, routers, firewalls, load balancers,
etc.), and even different firmware releases for a same equip-
ment. Managing heterogeneous multi-vendor networks of
non marginal scale could be extremely difficult, and could
require a huge expertise.

OpenFlow [1] emerged in 2008 as an attempt to change
this situation. OpenFlow’s approach was the identification
of a wendor-agnostic programming abstraction for config-
uring the forwarding behavior of switching fabrics. Via
the OpenFlow Application Programming Interface (API),
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network administrators could remotely reconfigure at run-
time forwarding tables, probe for flow statistics, and redirect
packets not matching any local flow entry towards a central
controller for further processing and for taking relevant de-
cisions; in essence “program” the network from a central
control point, clearly separated from the forwarding plane.

Although this vision, which we today call Software De-
fined Networking (SDN), finds its roots in earlier works [2],
does not nearly restrict to OpenFlow as device-level API,
and goes well beyond data plane programmatic interfaces,
OpenFlow is recognized as the technology which brought
SDN in the real world [3]. OpenFlow was immediately de-
ployable, thanks to its pragmatic balance between open net-
work programmability and real world vendors’ and deploy-
ers’ needs. Starting from the recognition that several differ-
ent network devices implement somewhat similar flow tables
for a broad range of networking functionalities (L2/L3 for-
warding, firewall, NAT, etc), the authors of OpenFlow pro-
posed an abstract model of a programmable flow table which
was “amenable to high-performance and low-cost implemen-
tations; capable of supporting a broad range of research; and
consistent with vendors’ need for closed platforms” (quote
from [1]). Via the OpenFlow “match/action” abstraction,
the device programmer could broadly specify a flow via an
header matching rule, associate forwarding/processing ac-
tions (natively implemented in the device) to the matching
packets, and access bytes/packet statistics associated to the
specified flow.

“dumb” switches: choice or compromise?

Almost six years have now passed since the OpenFlow in-
ception, and the latest OpenFlow standard, now at version
1.4 [4], appears way more complex than the initial elegant
and simple concept. To fit the real world needs, a huge
number of extension (not only the initially foreseen func-
tional ones, such as supplementary actions or more flexible
header matching, but also structural ones such as action
bundles, multiple pipelined tables, synchronized tables, and
many more [5]) were promoted in the course of the stan-
dardization process. And new extensions are currently un-
der discussion for the next OpenFlow version, among which
flow states which we will further discuss later on.

All this hectic work was not accompanied by any sub-
stantial rethinking in the original programmatic abstraction
(besides the abandoned Google OpenFlow 2.0 proposal, con-
sidered too ambitious and futuristic [6]), so as to properly
capture the emerging extensions, simplify their handling [7],
and prevent the emergence of brittle, platform-specific, im-



plementations [6] which may ultimately threaten the original
vendor-independency goal of the OpenFlow inventors.

As aresult, even if an OpenFlow device is now rich of func-
tionalities and primitives, it remains completely “dumb”,
with all the “smartness” placed at the controller side.

Someone could argue that this is completely in line with
the spirit of SDN’s control and data plane separation. And,
to avoid misunderstandings, we fully agree that network
management and control can be (logically) centralized. How-
ever we posit that several stateful tasks, just involving local
states inside single links/switches are unnecessarily central-
ized for easy management and programmability, for the only
reason that they cannot be deployed on the local Open-
Flow devices without retaining the explicit involvement of
the controller for any state update (for a notable example,
think to the off-the-shelf Layer 2 MAC learning operation).
As a result, the explicit involvement of the controller for any
stateful processing and for any update of the match/action
rules, is problematic. In the best case, this leads to extra
signaling load and processing delay, and calls for a capil-
lary distributed implementation of the “logically” central-
ized controller. In the worst case, the very slow control plane
operation a priori prevents the support of network control
algorithms which require prompt, real time reconfiguration
in the data plane forwarding behavior.

In essence, dumbness in the data forwarding plane appears
to be a by-product of the limited capability of the OpenFlow
data plane API compromise, rather than an actual design
choice or an SDN postulate. Can we then emerge with bet-
ter data plane APIs which permit to program some level of
smartness directly inside the forwarding device?

Contribution

As argued above, our belief is that a major shortcoming of
OpenFlow is its inability to permit the programmer to de-
ploy states inside the device itself. Adding states to Open-
Flow (as currently under discussion in ONF') is however not
sufficient: the programmer should be entitled to formally
specify how states should be handled, and this specification
should be ezecuted inside the device with no further inter-
action with the controller. Moreover, a viable solution must
come along with two fundamental attributes. First, it must
be amenable to high speed implementation. Second, it must
not violate the vendor-agnostic principle which has driven
the OpenFlow invention, and which has fostered SDN; in
essence, it must emerge as a concrete and pragmatic “ab-
straction”, rather than as a technical approach.

Our work mainly focuses on this second aspect: although
some hints are provided in section 3 on how our proposed
approach can be efficiently supported by existing OpenFlow
hardware, we do not claim to have fully addressed this as-
pect (as a compelling answer would require to exhibit an

Hronically, MAC learning is frequently invoked to motivate
OpenFlow extensions [5]. For instance, flow table synchro-
nisation (different views of the same data at different points
of the OpenFlow pipeline), to permit learning and forward-
ing functions to access the same data. Or flow monitors
(tracking of flow table changes in a multi-controller deploy-
ment), to permit a device natively implement a legacy MAC
learning function to inform the remote controller of any new
MAC address learned; in essence to permit to break (!) the
original OpenFlow vision of general purpose forwarding de-
vice configured only through the data plane programming
interface...

actual high speed HW implementation, which we do not yet
have at the time of writing). Rather, our main contribution
consists in the proposal of a wiable abstraction to formally
describe a desired stateful processing of flows inside the de-
vice itself, without requiring the device to be open source
or to expose its internal design. Our abstraction relies on
eXtended Finite State Machines (XFSM), which have been
recently shown to be effective in a very different network-
ing field, platform-agnostic wireless medium access control
programmability [8, 9]. More specifically, we first intro-
duce in section 2 a simplified XFSM called Mealy Machine,
and a relevant programmatic interface which can be inter-
preted as a somewhat natural generalization of the Open-
Flow match/action abstraction. In section 3 we discuss via-
bility and implementation issues, showing that XFSM sup-
port can largely reuse existing OpenFlow features. Finally,
section 4 discusses extensions towards support of “full” XF-
SMs [10] and the possible benefits.

Related work

Despite OpenFlow’s data plane programmability, the need
to use advanced packet handling for key network services has
led to the proliferation of many types of specialized middle-
boxes [11]. The extension of programmability and flexibility
features to these advanced network functions is a crucial as-
pect [12, 13], and a recent trend is that of virtualizing them
in data centers on general purpose hardware platforms and
to make them programmable and configurable using SDN
approaches [14].

It is quite evident that SDN for general purpose and spe-
cialized hardware has radically different constraints and ob-
jectives on the abstraction for configuring packet handling
functionalities [13]. We argue that, extending the Open-
Flow switch abstraction allows to offload on high perfor-
mance switches a pretty large set of functions reducing the
need to relay on controllers and middleboxes.

The need to extend the OpenFlow data plane abstraction
has been recently recognized by the research community [15,
16, 6]. In [15], the authors point out that the rigid table
structure of current hardware switches limits the flexibil-
ity of OpenFlow packet processing to matching on a fixed
set of fields and to a small set of actions, and introduce a
logical table structure RMT (Reconfigurable Match Table)
on top of the existing fixed physical tables and new action
primitives. Notably, the proposed scheme allows not only to
consider arbitrary width and depth of the matching for the
header vector but also to define actions that can take input
arguments and rewrite header fields. In [16], the approach
is more radical and, similarly to the early work on active
networks, packets are allowed to carry a tiny code that de-
fine processing in the switch data plane. A very interesting
aspect is the proposal of targeted ASIC implementations
where an extremely small set of instructions and memory
space can be used to define packet processing.

OpenFlow standardization has so far significantly extended
the set of actions (including also action bundles) and func-
tionalities [4], and there is some debate on the inclusion of
flow states in a next version [5]. However, extensions ap-
pear to add more and more capabilities, but with limited
attention to how to duly accommodate them in a clean API
[7], or event rethink its foundational principles (e.g., the
Google’s OpenFlow 2.0 proposal [6], which was considered
too disruptive).
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Figure 1: port knocking example: State Machine

Finally, the usage of XFSMs was initially inspired by
[8] where (bytecoded) XFSMs were used to convey a de-
sired medium access control operation into a specialized (but
closed [9]) wireless interface card. While the abstraction
(XFSM) is similar, the context (wireless protocols versus
flow processing), technical choices (state machine execution
engine versus table-based structures), and handled events
(signals and timers versus header matching), are not nearly
comparable.

2. BASIC ABSTRACTION

2.1 Anillustrative example

The OpenFlow data plane abstraction is based on a single
table of match/action rules for version 1.0, and multiple ta-
bles from version 1.1 on. Unless explicitly changed by the re-
mote controller through flow-mod messages, rules are static,
i.e., all packets in a flow experience the same forwarding
behavior.

Many applications would however benefit from the abil-
ity to evolve the forwarding behavior on a packet-by-packet
basis, i.e., depending on which sequence of packets we have
received so far. A perhaps niche, but indeed very descriptive
example is that of port knocking, a well known method for
opening a port on a firewall. A host that wants to estab-
lish a connection (say an ssh session, i.e., port 22) delivers
a sequence of packets addressed to an ordered list of pre-
specified closed ports, say ports 5123, 6234, 7345 and 8456.
Once the exact sequence of packets is received, the firewall
opens port 22 for the considered host. Before this event, all
packets (including of course the knocking ones) are dropped.

As any other stateful application, such an operation can-
not be configured inside an OpenFlow switch, but must be
implemented in an external controller. The price to pay
is that a potentially large amount of signalling information
(in principle up to all packets addressed to all closed ports!)
must be conveyed to the controller. Moreover, a timely flow-
mod command from the controller is needed for opening port
22 after a correct knocking sequence, to avoid that the first
“legitimate” ssh packet finds port 22 still closed. On the
other side, implementing this application in the controller
brings no gain: it does not benefit from network-wide knowl-
edge or high level security policies [17], but uses just local
states associated to specific flows on a single specific device.

Anyway, let us postpone the discussion on where this oper-
ation is implemented, and let us rather focus on how we can
model such a desired behavior. Arguably, the most natural
way is to associate, to each host, the finite state machine
illustrated in Figure 1. Starting from a DEFAULT state,
each correctly knocked port will cause a transition to a se-
ries of three intermediate states, until a final OPEN state is
reached. Any knock on a port different from the expected
one will bring back to the DEFAULT state. When in the

OPEN state, packets addressed to port 22 (and only to this
port) will be forwarded, whereas all remaining packets will
be dropped, but without resetting the state to DEFAULT.

2.2 Extended Finite State Machines

A closer look at Figure 1 reveals that each state transition
is caused by an event, which specifically consists in a packet
matching a given port number. Moreover, each state transi-
tion caused by an event match, is associated to a forwarding
action (in the example, drop or forward). A state transition
thus reminds very closely a legacy OpenFlow match/action
rule, but placed in a more general framework, characterized
by the following two distinguishing aspects.

2.2.1 XFSM Abstraction

We remark that the match which specifies an event not
only depends on packet header information, but also de-
pends on the state; using the above port knocking example,
a packet with port=22 is associated to a forward action when
in the OPEN state, but to a drop action when in any other
state. Moreover, the event not only causes an action, but
also a transition to a next state (including self-transitions
from a state to itself).

All this can be modeled, in an abstract form, by means of a
simplified type? of eXtended Finite State Machine (XFSM),
known as Mealy Machine. Formally, such a simplified XFSM
is an abstract model comprising a 4-tuple (S,1,0,T), plus
an initial starting (default) state So, where i) S is a finite
set of states; ii) I is a finite set of input symbols (events);
iii) O is a finite set of output symbols (actions); and iv)
T :S5x1 — S x O is a transition function which maps
<state,event> pairs into <state,action> pairs.

Similarly to the OpenFlow API, the abstraction is made
concrete (while retaining platform independency) by restrict-
ing the set O of actions to those available in current Open-
Flow devices, and by restricting the set I of events to Open-
Flow matches on header fields and metadata easily imple-
mentable in hardware platforms. The finite set of states S
(concretely, state labels, i.e., bit strings), and the relevant
state transitions, in essence the “behavior” of a stateful ap-
plication, are left to the programmer’s freedom.

2.2.2 State Management

Matches in OpenFlow are generically collected in flow ta-
bles. The discussion carried out so far recommends to clearly
separate the matches which define events (port matching in
the port knocking example) from those which define flows,
meant as entities which are attributed a state (host IP ad-
dresses). While event matches cause state transitions for
a given flow, and are specified by an XFSM, flow matches
are in charge to identify and manage the state associated to
the flow the arriving packet belongs to. Two distinct tables
(State Table and XFSM table), and three logical steps
thus naturally emerge for handling a packet (Figure 2).

1. State lookup: It consists in querying a State Table
using as key the packet header field(s) which identifies the
flow, for instance the source IP address; if a state is not

2While in this section, for concreteness, we limit to Mealy
Machines, in section 4 we discuss further possible extensions
towards the most general XFSM abstraction as defined in
[10]. Unless ambiguity emerges, we will loosely use the term
XFSM also to refer to the special case of Mealy Machines.
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>{ IPsrc=1.2.3.4 STAGE3 |3
IPsrc=5.6.7.8 OPEN
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Match fields Actions
state event action  Next-state
DEFAULT | Port=5123 | drop STAGE-1
[[ipsrc=1.2.3.4 | Port=8456 | STAGE-3 | | STAGE-1 | Port=6234 | drop STAGE-2
STAGE-2 | Port=7345 | drop STAGE-3
— STAGE-3 | Port=8456 | drop OPEN P>
2) XFSM state transition OPEN port=22 | forward OPEN
OPEN Port=* drop OPEN
* Port=* drop DEFAULT
State Table
Flow kev state
[Cipsrc=1.2.3.4 [ Port=8456 | OPEN ] IPSFC= ... . ..
Ipsre= .. ... .
| IPsrc=1.2.3.4 Write:OPEN
3) State update IPsrc=5.6.7.8 OPEN
WPsre=..... | . .. ..
IPsrc= no match DEFAULT

Figure 2: State Table, XFSM table, and packet han-
dling for the port knocking example.

found for a queried flow, we assume that a default state is
returned;

2. XFSM transition: The retrieved state label, added
as metadata to the packet, is used along with the header
fields involved in the event matching (e.g., port number), to
perform a match on an XFSM table, which returns i) the
associated action(s), and ii) the label of the next state;

3. State update: It consists in rewriting (or adding a new
entry to) the state table using the provided next state label.

The example in Figure 2 shows how the port knocking
example is supported in our proposed approach. The “pro-
gram” contained in the XFSM table (7 entries) implements
the port knocking state machine. Assume the arrival of a
packet from host 1.2.3.4; the state lookup (top figure) per-
mits to retrieve the current state, STAGE-3. Via the XFSM
table (middle figure), we determine that this state, along
with the knocked port 8456, triggers a drop action and a
state transition to OPEN (middle figure). The new state is
written (bottom figure) back in the state table for the host
entry. In the XFSM table, we assume an ordered matching
priority, with the last row having the lowest priority. As a
result, all the four transitions to the default state for packets
not matching the expected knocked port are coalesced in the
last entry. A notable characteristic of the proposed solution
is that the length of the tables is proportional to the number
of flows (state table) and number of states (XFSM table),
but not to their product.

2.3 Flow identification

Unfortunately, the above described abstraction still misses
a fundamental further step which permits to model a sub-
set of important stateful operations, in which states for
a given flow are updated by events occurring on different
flows. A prominent example is MAC learning: packets are
forwarded using the destination MAC address, but the for-
warding database is updated using the source MAC address.
Similarly, the handling of bidirectional flows may encounter

MAC learning XFSM

lookup-scope = {macdst}
update-scope = {macsrc}
State Event Actions | Next-state
DEFAULT | in_port=1 flood PORT-1
PORT-1 in_port=1 output 1 PORT-1
PORT-2 in_port=1 output 2 PORT-1
[ PORT-N [ in_port=1 [ output N | PORT-1 ]

DEFAULT | in_port=N flood PORT-N
PORT-1 in_port=N output 1 PORT-N
PORT-2 in_port=N output 2 PORT-N

[ PORT-N [ in_port=N “ output N | PORT-N |

Table 1: XFSM table for a MAC learning Layer
2 switch with N ports;“in_port”= switch input port
of the packet, action “flood” = replicate and forward
packet to all switch ports except in_port; state labels
= port number to which the flow shall be forwarded.

the same needs; for instance, the detection of a returning
TCP SYNACK packet could trigger a state transition on
the opposite direction. And in protocols such as FTP, a
control exchange on port 21 could be used to set a state on
the data transfer session on port 20.

The root cause of this issue is that, so far, we have not
yet conceptually separated the identity of the flow to which
a state is associated, from the actual position in the header
field from which such an identity is retrieved. Since, in our
proposed abstraction, flow identification is needed to lookup
and to update the state table, we simply need to provide the
programmer with the ability to use an eventually different
header field in these two accesses to the State Table. We thus
define as “lookup-scope” and “update-scope” the ordered
sequence of header fields that shall be used to produce the
key used to access the state table and perform, respectively,
a lookup or an update operation.

With such feature, programming, say, a MAC learning
operation, becomes trivial. We start by defining the state
associated to a flow identity (namely, a MAC address) the
current switch port to which packets should be forwarded
(or DEFAULT if no port has been yet learned). During
state lookup, the lookup-scope is set to be the MAC destina-
tion address. During state update, we define as udpate-scope
the MAC source address. Finally, we fill the XFSM table
with the transitions given in Table 1. Thanks to the udpate-
scope, the <key,value> pair used in the State Table update
is thus <macsrc,next-state>. In this example table, we on
purpose assume compatibility with the current OpenFlow
specification, and the N? + N size of the table (being N
the number of switch ports) thus depends on the OpenFlow
limitations, and not on our XFSM abstraction. Indeed, we
remark that the usage of parameters permitted by the Re-
configurable Match Tables recently introduced in [15] would
yield an XFSM table comprising only two entries: the de-
fault one plus the entry state : port(i) X event : in_port(j) —
action : output(i) X next_state : in_port(j).

2.4 Application Programming Interface

As a summary, our basic data plane programming abstrac-
tion to formally specify a stateful operation comprises the
specification of two tables in terms of:



1. an XFSM table comprising four columns: i) a state
provided as a user-defined label, ii) an event expressed as
an OpenFlow match, iii) a list of OpenFlow actions, and iv)
a next-state label; each row is a designed state transition;

2. the lookup-scope and update-scope used to access
and update the State Table, respectively.

It is not yet clear, at this stage, whether it could be prac-
tically convenient to further generalize such an API by per-
mitting to bind a different update-scope to different entries
in the XFSM table; in other words, associate each next-state
entry with its update-scope which may then differ depend-
ing on the specific transition considered (a row in the XFSM
table). Indeed, this extra flexibility, for which we have not
yet identified a clear use case, would be paid in terms of
additional internal hardware complexity.

3. IMPLEMENTATION ISSUES
3.1 Feasibility analysis

We first discuss how a switch architecture should be con-
ceptually extended to support our proposed stateful opera-
tion. Our specific focus is to gain insights on which currently
available OpenFlow primitives can be reused (and how), and
which new primitives need to be added.

3.1.1 Architecture and primitives

A crucial feature needed by our scheme is the ability to
perform matches using state labels and use more than one
table. These features are indeed available: since Openflow
1.1, table pipeline processing and metadata support have
been introduced. A packet entering an OpenFlow switch is
processed through a set of linked flow tables that provide
matching, forwarding, and packet modification. Metadata
are used to extend packet header so as to carry arbitrary
information from one table to the next. The controller can
install/remove flow entries by sending flow-mod messages.

We indicate with the term stateless stage the processing
operated by a single flow table. Conversely, we define as
stateful stage (Figure 3) a logical block comprising a State
Table and an XFSM table, and implementing our abstrac-
tion. A packet is first processed by a key extractor which
produces a string of bits representing the key to be used
to match a row in the state table. The key is derived by
concatenating the header fields defined in the lookup-scope.
The matched state label is appended to the packet headers
as metadata. In case of table-miss (the key is not matched)
then a DEFAULT state will be appended to the packet head-
ers. If the header fields specified by the lookup-scope are not
found (e.g. extracting the IP source address when the Eth-
ernet type is not IP), a special state value NULL is returned.

The XFSM table can be implemented in OpenFlow v1.1+
as a standard flow table whose entries are matched using
the relevant header fields representing the event and the
(metadata) state label. We only need to specify, along with
the action set to be executed, a supplementary command
developed as an OpenFlow instruction, specifically a new
SET_STATE instruction that will immediately trigger an up-
date of the previous state table. The usage of an instruction
guarantees that the state update is performed at the end
of the stage, even when action bundles are configured, and
permits to pipeline our stateful stage with supplementary
stages, including other stateful ones.

Rewrite of the state is handled by processing the packet
header trough a key ertractor that will now refer to the
update-scope, the key thus obtained will be used to rewrite
or add a new row in the state table. State updates can be
performed also by the controller similarly to flow-mod, for
this reason we name them as state-mod messages.

3.1.2  Configuration

We assume that by default all the flow tables that a switch
provide for the pipeline processing are intended as stateless
(i.e. standard Openflow). The controller can hence enable
stateful processing for one or more flow table by sending a
special control message to the switch. Configuring a stateful
stage is made by associating a state table to an existing flow
table and defining the lookup-scope and the update-scope.
Obviously, the two lookup-scope and update-scope must pro-
vide same length keys, which is coherent with the definition
of XFSM on a homogeneous set of flows.

Once the stateful stage has been configured, the controller
can proceed installing entries in the flow table that will now
match also on the current state of the flow. It is important
to note that a complete description of the XFSM can be find
just looking at the set of flow entries installed in the flow
table as a combination of event and state matching, state
transitions, and actions.

3.1.3  Support for multiple XFSMs

Multiple XFSM programs operating on different lookup
scopes can be trivially configured using pipeling of multi-
ple stateful stages. More interesting is the case of different
XFSMs that must be configured on a same scope. As an
example, in the port knocking example we could wish to
have a set of addresses, say those originated from the sub-
net 131.175/16, for which we would like to have a different
knock sequence, or even port 22 opened by default, with-
out going through the knocking process. This can be easily
accomplished by adding to the State Table the ability to
match prefixes (e.g. match IPsrc=131.175.%.*), and use pri-
ority ordering (or longest match) to determine the matching
to be used for retrieving an associated state.

3.2 Software datapath implementation

Being a more compelling HW implementation a much
longer term goal, we tried to gain further insights by devel-
oping a prototype software implementation. We extended
the Openflow 1.3 software switch [18] with our proposed
stateful operation support. Our implementation is available
at [19], so we limit to summarize here the main modifica-
tions (very few, as a further proof of the low impact of our
proposal).

To support advertisement and configuration of the pro-
posed state management feature, a new switch capability bit
OFPC_TABLE_STATEFUL has been defined, as well as a new ta-
ble configuration bit OFPCT_TABLE_STATEFUL. The basic flow
table data structure has been extended with support for the
state table and key extractors. A new Openflow instruc-
tion OFPIT_SET_STATE has been added to allow the Open-
flow extended datapath to update the state table with a
given next-state parameter. A new state modify messages
called OFP_STATE_MOD have been defined along with the rele-
vant message structure to allow the controller to respectively
configure the state entries and key extractors (lookup-scope
and update-scope). As already briefly anticipated, the ac-
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Figure 3: Architecture of the stateful stage. The XFSM table is represented by a standard Openflow table,
while a SET_STATE action is used to trigger updates on the state table.

tual implementation and configuration of the XFSM table
has not required any modifications to the existing code as it
simply relies on the standard Openflow match table struc-
ture and flow-mod message (beside the already discussed
support for the new OFPIT_SET_STATE instruction).

4. BEYOND THE BASIC ABSTRACTION?

While outlining in the previous sections our basic idea,
we tried to remain grounded to the current OpenFlow func-
tionalities, so as to hopefully convince the reader that what
we do propose is not futuristic, but can be readily deployed.
In what follows, we abandon prudence and we try to out-
line (with no pretense of making any firm claim, but rather
with the goal to stimulate discussion) how the same pro-
grammability model could be extended along complemen-
tary directions, so as to provide device programmers with
further network function programming abilities.

We point out that we do not claim our propose is able
to implement all possible functionalities that are currently
supported by complex middleboxes. Nevertheless we expect
that some of their less complex functions can be shifted to
switches for a more responsive reaction of the network.

4.1 Improving state handling

Soft states and event timers. Adding timeouts as de-
scribed in OpenFlow to a state table entry is straightforward
and the API could be extended to permit the programmer to
specify a different timeout for each state transition. Man-
aging timeout expiration is also trivial, but only if we do
assume that all states return to the DEFAULT one upon
timeout expiration. Indeed, timeouts could be implicitly
managed by assuming that a state lookup which retrieves
an expired state shall return a DEFAULT state. Rather,
handling timer expirations as explicit events, which trigger
meaningful (non default) transitions, might open very inter-
esting scenarios (support for exponential backoff operation,
enforce a different TCP forwarding on the basis of whether
an ACK returns before or after a time window, etc), but
arguably requires a significant leap in the implementation.

Using state labels as function parameters. The
MAC learning example illustrated in Table 1 requires an
entry for each possible port of the switch. By permitting
the forwarding action to receive as input a parameter pro-
vided in the meta-data associated to the packet (in our spe-
cific case, the state label interpreted as a switch port num-
ber) it is possible to implement the same program with only
two entries: one for the default state (MAC destination not
found in the forwarding database) and one which forwards
the MAC frame to the switch port found in the state label.

Note that efficient technical ways to pass (extended) header
parameters to actions have been recently discussed in [15].

Simple arithmetic operations on labels. The com-
bination of states and simple arithmetic operations permits
several interesting extensions. For instance, we could triv-
ially program a state machine which thwarts some IP frag-
mentation attacks by forwarding IP fragments only if they
are received in strict order. We recall that a very basic IP
fragmentation attack consists in sending a first small frag-
ment (fragment offset = 0, more fragment = 1), and then
send a second IP fragment claimed to be the last small frag-
ment of a large (64 KB) packet. This could be easy detected
by “computing”, from the length of the first IP fragment, the
expected offset for the second fragment, use it as a tempo-
rary state label (or a numerical value associated to a “frag-
ment” state), and forward packets only if they match such a
computed offset field (i.e. if they are in sequence). We stress
that, albeit apparently compelling and possibly inspiring a
broad range of extensions, such “arithmetic computations”
may become critical at high speed, and a much closer look
at their viability is needed.

4.2 Enforcing conditions: “full” XFSMs

Flow statistics can be considered as “memory registers”
associated to a flow. Similarly, device-level states, such as
the current occupancy of an output queue, or device level
statistics, such as the amount of bytes delivered through a
given switch port, can be as well interpreted as “global reg-
isters”. And, finally (as implied in the previous section), the
association of a numerical value to a state can be interpreted
as a value stored in a per-flow register. The values stored
in such “registers” could be used as further conditions to
trigger an action associated to an event.

Quite interestingly, the definition of eXtensible Finite State
Machine given in [10] provides a formal model which gen-
eralizes the Mealy Machines introduced in section 2, and
which permits to explicitly accounts for conditions taken on
registry values. And, indeed, the ability to set conditions in
an XFSM was actually proven to be vital in [8], for formally
specifying wireless MAC protocols.

We recall from [10] than an XFSM is an abstract 7-tuple
(S,1,0,T,D,U, F), where the states S, the input events I
and the output action O are the same as defined in section
2, and where:

e D is an n-dimensional linear space D1i,--- D, which
describes all possible configurations of n “registers”;

e Fisaset of enabling functions f; : D — {TRUE, FALSE}
which models conditions to be verified on the configu-
ration registers to enable transitions;



e U is a set of update functions u; : D — D which per-
mits to model changes in the deployed registers; and

o T:SXxIXF — SxUxO is a transition function which
takes as input the current state, event, and conditions,
and outputs i) the next state, ii) the associated action,
and iii) the associated registry update.

We argue that under the (restrictive) condition of prede-
fined (hard coded in the device and exposed via the program-
ming interface, rather than freely programmed) set of avail-
able “registers”, “enabling functions”, and “update func-
tions”, this abstraction appears at reach with current tech-
nology and hence promising to be explored further. Indeed,
conditions could be exploited in many scenarios, such as
QoS (differentiated packet treatment when above a given
count threshold - currently addressed in OpenFlow with a
dedicated new extension, the meters), load balancing (set
forwarding port for a new flow, based on queue status or
link load statistics), monitoring, and so on.

5. CONCLUSIONS

This paper aims to propose a first step in the direction
of supporting stateful per flow processing over closed plat-
forms. In our proposal, and in full adherence with the Open-
Flow strategy, we took a very pragmatic approach: we com-
promised on generality and we “restricted” to the stateful
handling of standard OpenFlow match/action rules. This
permitted us to emerge with an apparently immediately de-
ployable programmatic abstraction, relying on core primi-
tives and data structures mostly present in OpenFlow im-
plementation. Our abstraction generalizes the OpenFlow
match/action rules in terms of an extensible finite state ma-
chines, which are directy executed inside the switching device,
thus offloading controllers and, perhaps more interestingly,
entailing control functions which require wire-speed, packet-
by-packet, operation, i.e. which cannot be delegated to the
slow (logically) centralized control plane operation.

As a compromise, we obviously have no pretense to claim
that our abstraction can support all (!) the possible flow
processing needs. Nevertheless, we believe that stateful han-
dling of OpenFlow rules can be beneficial in many scenar-
ios (some of those illustrated via use case examples), and
we hope to stimulate a broader discussion on the many
questions that our paper opens (high speed implementation
should restrict to Mealy Machines, or could support more
general XFSMs? Which network processing function, today
implemented in the controller or in dedicated middleboxes,
can be described using XFSMs? And how the ability to
dynamically control flow states directly in the device may
influence broader SDN frameworks?).
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